On the Sum of Proximinal Subspaces

Moshe Feder
St. Lawrence University, Canton, New York 13617, U.S.A.
Communicated by E. W. Cheney

Received February 28, 1985

1. Introduction

A subset M of a Banach space X is said to be proximal if, for every x in $X, \inf \{\|x-m\|: m \in M\}$ is attained. The following was raised by E. W. Cheney [1].

Problem. If U and V are proximinal subspaces in a Banach space X and if $U+V$ is closed, does it follow that $U+V$ is proximinal?

We give a negative answer to this problem. However, we show that if V is reflexive and $U \cap V$ is finite dimensional (in particular, if V is finite dimensional), then the answer is positive.

2. Example

If x is an element of c_{0}, we denote its nth coordinate by x_{n}. For any positive integer n let $e^{(n)}=(0, \ldots, 0,1,0, \ldots) \in c_{0}$ (the 1 in the nth place).

Let

$$
\begin{gathered}
U=\left\{x \in c_{0}: \text { for all } n, x_{2 n}=0 ; \sum 2 n^{n} x_{2 n-1}=0\right\} \\
V=\left\{x \in c_{0}: \text { for all } n, x_{2 n-1}=0 ; \sum 2^{n} x_{2 n}=0\right\} \\
M=U+V=\left\{x \in c_{0}: \sum 2^{-n} x_{2 n-1}=0=\sum 2^{n} x_{2 n}=0\right\}
\end{gathered}
$$

and

$$
X=M+\{\lambda f: \lambda \text { scalar }\} \subset c_{0}
$$

where

$$
f=e^{(1)}+e^{(2)}=(1,1,0,0,0, \ldots)
$$

Then U and V are proximinal in X, while $M=U+V$ is not.
Proof. (a) We show first that U is proximinal in X. Given $y \in U, z \in V$ and λ a scalar, we must prove that there is $u \in U$ such that

$$
d(y+z+\lambda f, U)=\|y+z+\lambda f-u\|
$$

We may clearly assume that $y=0$ since $y \in U$. Further, it is enough to prove such u exists when $\lambda=1$ since when $\lambda=0$ choosing $u=0$ is possible since $d(z, U)=\|z\|$ (for z is supported on the even integers and all elements of U are supported on the odd ones), and when $\lambda \neq 0$ we use homogeneity.

Thus, we need to show only that if $z \in V$ there is $u \in U$ such that

$$
d(z+f, U)=\|z+f-u\| .
$$

Now,

$$
\begin{equation*}
d(z+f, U)=\max \left\{\left\|z+e^{(2)}\right\|, d\left(e^{(1)}, U\right)\right\} \tag{1}
\end{equation*}
$$

For every n the sequence

$$
g^{(n)}=\frac{1}{2}\left(1-2^{-n}, 0,-1,0,-1,0,-1, \ldots, 0,-1,0,0, \ldots\right)
$$

with -1 appearing n times is an element of U and

$$
\left\|e^{(1)}-g^{(n)}\right\| \rightarrow \frac{1}{2}
$$

Thus

$$
\begin{equation*}
d\left(e^{(1)}, U\right) \leqslant \frac{1}{2} \tag{2}
\end{equation*}
$$

We now claim that

$$
\begin{equation*}
\left\|z+e^{(2)}\right\|>\frac{1}{2} \tag{3}
\end{equation*}
$$

Assume to the contrary that $\left\|z+e^{(2)}\right\| \leqslant \frac{1}{2}$; then $\left|z_{2}\right| \geqslant \frac{1}{2}$ and $\left|z_{k}\right| \leqslant \frac{1}{2}$ for all $k>2$.

Since $\sum 2^{-n} z_{2 n}=0$, we get

$$
\frac{1}{4} \leqslant \frac{1}{2}\left|z_{2}\right|=\left|\sum_{n \geqslant 2} 2^{-n} z_{2 n}\right| \leqslant \sum_{n \geqslant 2} 2^{-n}\left|z_{2 n}\right| \leqslant \frac{1}{2} \sum_{n \geqslant 2} 2^{-n}=\frac{1}{4} .
$$

Hence we must have equalities throughout the last string of inequalities, which can happen only if $\left|z_{2 n}\right|=\frac{1}{2}$ for all n. But this contradicts z being in c_{0}.

Thus we have

$$
\begin{equation*}
\left\|z+e^{(2)}\right\|>\frac{1}{2} \geqslant d\left(e^{(1)}, U\right) \tag{4}
\end{equation*}
$$

This together with (1) give

$$
d(z+f, U)=\left\|z+e^{(2)}\right\| .
$$

By (4) we have some $u \in U$ such that

$$
\left\|e^{(1)}-u\right\|=\left\|z+e^{(2)}\right\|
$$

This yields

$$
\|z+f-u\|=\left\|z+e^{(2)}\right\|=d(z+f, U) .
$$

(b) The proof that V is proximinal in X is similar (also, there is an isometry on X that interchanges U and V).
(c) Finally, to prove that M is not proximinal note that we have shown already that $\left\|z+e^{(2)}\right\|>\frac{1}{2}$ for every $z \in V$. If x is any element in M then $x=y+z$ for suitable $y \in U, z \in V$ and

$$
\|x+f\| \geqslant\left\|z+e^{(2)}\right\|>\frac{1}{2} .
$$

However,

$$
d(f, M)=\frac{1}{2}
$$

since

$$
\left\|f-h^{(n)}\right\| \rightarrow \frac{1}{2}
$$

when

$$
h^{(n)}=\frac{1}{2}\left(1-2^{n}, 1-2^{-n},-1,-1,-1, \ldots,-1,0,0, \ldots\right)
$$

while $h^{(n)} \in X$ when -1 appears the right number of times ($2 n$).
Therefore X is not proximinal.
Remark. In fact $X=\left\{x \in c_{0}: \sum 2^{-n}\left(x_{2 n}-x_{2 n-1}\right)=0\right\}$, a hyperplane in c_{0}.

3. Some Positive Results

Theorem. Let F and G be subspaces of a Banach space X. Assume that F is proximinal, G is reflexive, $F \cap G$ is finite dimensional and $F+G$ is closed. Then $F+G$ is proximinal.

Proof. Assume first that $F \cap G$ is $\{0\}$. Let $x_{0} \in X$. There are sequences $\left\{f_{n}\right\}$ in F and $\left\{g_{n}\right\}$ in G such that

$$
\left\|x_{0}-\left(f_{n}+g_{n}\right)\right\| \rightarrow d\left(x_{0}, F+G\right)
$$

Clearly $\left\{f_{n}+g_{n}\right\}$ is bounded. The linear projection P from $F+G$ onto G vanishing on F (i.e., $P(f+g)=g$ whenever f is in F and g is in G) is bounded (by the Closed Graph Theorem). Thus $\left\{g_{n}\right\}$ is also bounded and so is $\left\{f_{n}\right\}$.

Since G is reflexive $\left\{g_{n}\right\}$ has a weakly convergent subsequence. By passing to a subsequence we may assume that $g_{n} \rightarrow^{\omega} g_{0}$ for some $g_{0} \in G$. Thus, there is a sequence of convex combinations

$$
\tilde{g}_{n}=\sum_{i \in I_{n}} \lambda_{i} g_{i}
$$

(where $I_{n}=\left\{i: p_{n}<i \leqslant p_{n+1}\right\}, p_{n}$ an increasing sequence of integers, $\lambda_{i} \geqslant 0$ and $\left.\sum_{i \in I_{n}} \lambda_{i}=1\right)$ such that $\left\|\tilde{g}_{n}-g_{0}\right\| \rightarrow 0$.

Denote

$$
\tilde{f}_{n}=\sum_{i \in I_{n}} \lambda_{i} f_{i}
$$

then

$$
\begin{aligned}
\left\|x_{0}-\tilde{f}_{n}-\tilde{g}_{n}\right\| & =\left\|\sum_{i \in I_{n}} \lambda_{i}\left(x_{0}-f_{i}-g_{i}\right)\right\| \\
& \leqslant \sum_{i \in I_{n}} \lambda_{i}\left\|x_{0}-f_{i}-g_{i}\right\| .
\end{aligned}
$$

Hence

$$
\left\|x_{0}-\tilde{f}_{n}-\tilde{g}_{n}\right\| \rightarrow d\left(x_{0}, F+G\right)
$$

Also

$$
\left\|x_{0}-\left(\tilde{f}_{n}+g_{0}\right)\right\| \leqslant\left\|x_{0}-\left(\tilde{f}_{n}+\tilde{g}_{n}\right)\right\|+\left\|\tilde{g}_{n}-g_{0}\right\|
$$

which gives

$$
\left\|x_{0}-\left(\tilde{f}_{n}+g_{0}\right)\right\| \rightarrow d\left(x_{0}, F+G\right)
$$

Let f_{0} be the nearest element to $x_{0}-g_{0}$ in F, then

$$
\left\|x_{0}-\left(f_{0}+g_{0}\right)\right\| \leqslant\left\|x_{0}-\tilde{f}_{n}-g_{0}\right\| \rightarrow d\left(x_{0}, F+G\right) .
$$

This means that

$$
\left\|x_{0}-\left(f_{0}+g_{0}\right)\right\|=d\left(x_{0}, F+G\right)
$$

and thus $F+G$ is proximinal.
Finally, if the intersection of F and G is not $\{0\}$ but a finite dimensional subspace, we can find a closed subspace G_{1} of G (hence reflexive) such that $F+G=F+G_{1}$ and with a trivial intersection of F and G_{1}.

Corollary. Let F and G be subspaces of a Banach space X, with F proximinal and G finite dimensional. Then $F+G$ is proximinal.

Proof. Since G is finite dimensional and F must be closed, $F+G$ is closed.

Reference

1. "Canad. Math. Soc. Conf. Proc. 3," 1983, p. 391.
