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1. INTRODUCTION

A subset M of a Banach space X is said to be proximal if, for every x in
X, inf{lx—m|: meM} is attained. The following was raised by
E. W. Cheney [1].

ProBLEM. If U and V' are proximinal subspaces in a Banach space X
and if U+ V is closed, does it follow that U+ V' is proximinal?

We give a negative answer to this problem. However, we show that if V
is reflexive and Un V is finite dimensional (in particular, if V is finite
dimensional), then the answer is positive.

2. EXAMPLE

If x is an element of ¢,, we denote its nth coordinate by x,. For any
positive integer n let ¢ =(0,..., 0, 1,0,...) e ¢, (the 1 in the nth place).
Let

U= {xe coiforallm, x,,=0;) 2 "x,, | = 0}
V= {x eco:foralln, x,, =0, 2 "x,,= 0}

M=U+ Vz{xec(,:z2"x2,, ,=0=)2 ”xz,,zO}

and

X =M+ {if: Ascalar} = ¢,
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where
f=e"+e?=(1,1,0,0,0,.).

Then U and V are proximinal in X, while M = U+ V is not.

Proof. (a) We show first that U is proximinal in X. Given ye U, ze V
and 4 a scalar, we must prove that there is u e U such that

dy+z+ i, U)=lly+z4+ 4 —ul.

We may clearly assume that y =0 since ye U. Further, it is enough to
prove such u exists when A= 1 since when 1 =0 choosing u =0 is possible
since d(z, U) = | z|| {for z is supported on the even integers and all elements
of U are supported on the odd ones), and when A # 0 we use homogeneity.

Thus, we need to show only that if ze V there is ue U such that

dz+f,U)=|z+ f—ul.
Now
d(z+ f, U)=max{ |z +¢?|, d(e'", U)}. (1)
For every n the sequence
gm=41-2""0,-1,0,-1,0, —1,.,0, —1,0,0...)

with — | appearing » times is an element of U and

eV — g = 3.
Thus
die", Uy< 4. (2)
We now claim that
Iz + e > 3. (3)

Assume to the contrary that ||z +e'®| <3; then |z,| =1 and |z,] <1 for
all k>2.
Since 3} 27"z,,=0, we get

Y 27"z,

nz?2

= Z2"|zz,l 22"

nz2 n>2

-l|
1x72

Hence we must have equalities throughout the last string of inequalities,
which can happen only if |z,,| =3 for all n. But this contradicts z being in
Co-

64('49:2-4
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Thus we have

lz+ e >4=d(e", U). (4)
This together with (1) give

diz+ f, U)=|z+e?|.
By (4) we have some u € U such that

e —ull = |z + ).
This yields
Iz +f—ul =llz+ e =d(z+ £, U).

(b) The proof that ¥ is proximinal in X is similar (also, there is an
isometry on X that interchanges U and V).

(c) Finally, to prove that M is not proximinal note that we have shown
already that [z +e®| > for every ze V. If x is any element in M then
x = y+z for suitable ye U, ze V and

Ix+ flI =iz + e > 3.

However,
d(f. M)=3
since
If—h" - 3
when

h=31-2"1-2"" —1, -1, —1,., —1,0,0,..)

while 4"’ e X when — 1 appears the right number of times (2n).
Therefore X is not proximinal.

Remark. 1In fact X={xec¢y: > 2 (x5, — Xs,_,) =0}, a hyperplane in
Co-

3. SoME PosSITIVE RESULTS

THEOREM. Let F and G be subspaces of a Banach space X. Assume that F
is proximinal, G is reflexive, F " G is finite dimensional and F + G is closed.
Then F+ G is proximinal.



ON THE SUM OF PROXIMINAL SUBSPACES 147

Proof. Assume first that Fn G is {0}. Let x,€ X. There are sequences
{f,} in Fand {g,} in G such that

Ixo = (fo + 8 = d(xq, F+G).

Clearly {f,+g,} is bounded. The linear projection P from F+ G onto G
vanishing on F (i.e., P(f + g)= g whenever fis in F and g is in G) is boun-
ded (by the Closed Graph Theorem). Thus {g,} is also bounded and so is
()

Since G is reflexive {g,} has a weakly convergent subsequence. By
passing to a subsequence we may assume that g, —“ g, for some g,€G.
Thus, there is a sequence of convex combinations

.= Z 2 g

iely

(where I, = {i: p,<i<p,, }, p, an increasing sequence of integers, 4,>0

and > ;., A,=1) such that g, — goll = 0.
Denote
}(n: Z A’l.f‘l
iely
then
llxo—fn—gnll = Z Alxo—fi— &)
iely
<Y Aillxo—fi— gl
iel,
Hence
lxo—f., — &Il = d(xo, F+ G).
Also

10— (7, + gl < %0 = (7 + &)1 + 12, — g0l
which gives

1Xo = (F + g0l = d(x,, F+ G).

Let f, be the nearest element to x,— g, in F, then

1%0 = (fo+ g0 < llxo = F — &oll = d(xo, F+ G).
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This means that
llxg— (fo+ gl =d(x4, F+ G)

and thus F+ G is proximinal.

Finally, if the intersection of F and G is not {0} but a finite dimensional
subspace, we can find a closed subspace G, of G (hence reflexive) such that
F+ G=F+ G, and with a trivial intersection of F and G,.

COROLLARY. Let F and G be subspaces of a Banach space X, with F
proximinal and G finite dimensional. Then F+ G is proximinal.

Proof. Since G is finite dimensional and F must be closed, F+ G is
closed.
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